Journal of Applied Analysis Vol. 9, No. 2 (2003), pp. 149–162 CRITICAL CARDINALITIES AND A
CRITICALCARDINALITIESANDADDITIVITYPROPERTIESOF
COMBINATORIALNOTIONSOFSMALLNESS
S.SHELAHandB.TSABAN
ReceivedAugust6,2002and,inrevisedform,May19,2003
Abstract.Motivatedbytheminimaltowerproblem,anearlierworkstudieddiagonalizationsofcoverswherethecoversarerelatedtolin-earquasiorders(τ-covers).Wedealwithtwotypesofcombinatorialquestionswhicharisefromthisstudy.
1.Twonewcardinalsintroducedinthetopologicalstudyareex-pressedintermsofwellknowncardinalscharacteristicsofthecon-tinuum.
2.Westudytheadditivitynumbersofthecombinatorialnotionscor-respondingtothetopologicaldiagonalizationnotions.
ThisgivesnewinsightsonthestructureoftheeventualdominanceorderingontheBairespace,thealmostinclusionorderingontheRoth-bergerspace,andtheinteractionsbetweenthem.
2000MathematicsSubjectClassification.03E17,06A07,03E35,03E10.
Keywordsandphrases.τ-cover,tower,splittingnumber,additivitynumber.
TheresearchofthefirstauthorispartiallysupportedbyTheIsraelScienceFoundationfoundedbytheIsraelAcademyofSciencesandHumanities.Publication768.
Thispaperconstitutesapartofthesecondauthor’sdoctoraldissertationatBar-IlanUniversity.
ISSN1425-6908cHeldermannVerlag.
150S.SHELAHandB.TSABAN
1.Introductionandoverview
Letωdenotethesetofnaturalnumbers.Weworkwithtwospaceswhichcarryaninterestingcombinatorialstructure:TheBairespaceωωwitheventualdominance≤∗(f≤∗giff(n)≤g(n)forallbutfinitelymanyn),andtheRothbergerspace[ω]ω={A⊆ω:Aisinfinite}with⊆∗(A⊆∗BifA\\Bisfinite).WewriteA⊂∗BifA⊆∗BandB⊆∗A.
AsubsetXofωωisunboundedifitisunboundedwithrespectto≤∗.Xisdominatingifitiscofinalinωωwithrespectto≤∗.bistheminimalsizeofanunboundedsubsetofωω,anddistheminimalsizeofadominatingsubsetofωω.
AninfinitesetA⊆ωisapseudo-intersectionofafamilyF⊆[ω]ωifforeachB∈F,A⊆∗B.AfamilyF⊆[ω]ωisatowerifitislinearlyquasiorderedby⊆∗,andithasnopseudo-intersection.tistheminimalsizeofatower.AfamilyF⊆[ω]ωiscenterediftheintersectionofeach(nonempty)finitesubfamilyofFisinfinite.pistheminimalsizeofacenteredfamilywhichhasnopseudo-intersection.AfamilyF⊆[ω]ωissplittingifforeachinfiniteA⊆ωthereexistsS∈FwhichsplitsA,thatis,suchthatthesetsA∩SandA\\Sareinfinite.sistheminimalsizeofasplittingfamily.
Letc=2ℵ0.Thefollowingrelations,whereanarrowmeans≤,arewell-known[3]:
b
ℵ1→p→td→c
sNopairofcardinalsinthisdiagramisprovablyequal,exceptperhapspandt.TheMinimalTowerproblem,whichaskswhetheritisprovablethatp=t,isoneofthemostimportantproblemsininfinitecombinatorics,anditgoesbacktoRothberger(see,e.g.,[12]).
Newcardinals.In[15],topologicalnotionsrelatedtopandtwerecom-pared.In[17]thetopologicalnotionrelatedtot(calledτ-covers)wasstud-iedinawidercontext.Thisstudyledbacktoseveralnewcombinatorialquestions,oneofwhichrelatedtotheminimaltowerproblem.
Definition1.ForafamilyF⊆[ω]ωandaninfiniteA⊆ω,defineFA={B∩A:B∈F}.IfallsetsinFAareinfinite,wesaythatFAisalargerestrictionofF.LetκωτbetheminimalcardinalityofacenteredfamilyF⊆[ω]ωsuchthatthereexistsnoinfiniteA⊆ωsuchthattherestrictionFAislargeandlinearlyquasiorderedby⊆∗.
COMBINATORIALNOTIONSOFSMALLNESSANDADDITIVITY151
Itisnotdifficulttoseethatp=min{κωτ,t}[17].InSection2weshowthatinfact,p=κωτ.Thisexistenceofacenteredfamilywithnolargelinearlyquasiorderedrestrictionshowsthatpiscombinatorially“larger”thanassertedinitsoriginaldefinition,andsuggestsanadditionalevidencetothedifficultyofseparatingpfromthecombinatorially“larger”cardinalt:Nowtheconsistencyofκωτ [fRg]={n:f(n)Rg(n)}. Next,Forfunctionsf,g,h∈[hRgSf]⊆ωby: ωω, andbinaryrelationsR,Sonω,define [fRgSh]=[fRg]∩[gSh]={n:f(n)Rg(n)andg(n)Sh(n)}.ForasubsetXofωωandg∈ωω,wesaythatgavoidsmiddlesinXwithrespecttoR,Sif: 1.foreachf∈X,theset[fRg]isinfinite; 2.forallf,h∈Xatleastoneofthesets[fRgSh]and[hRgSf]isfinite. XsatisfiestheexcludedmiddlepropertywithrespecttoR,Sifthereexistsg∈ωωwhichavoidsmiddlesinXwithrespecttoR,S.xR,SistheminimalsizeofasubsetXofωωwhichdoesnotsatisfytheexcludedmiddlepropertywithrespecttoR,S. Thecardinalx=x<,≤wasdefinedin[17].InSection3weexpressallofthefourcardinalsx≤,≤,x<,≤,x≤,<,andx<, maxfin(Y):={max(F):FisafinitesubsetofY} isdominating. Wewillusethefollowingnotations: B:thecollectionofallboundedsubsetsofωω; X:thecollectionofallsubsetsofωωwhichsatisfytheexcludedmiddlepropertywithrespectto<,≤; Dfin:thecollectionofallsubsetsofωωwhicharenotfinitelydominating; and D:thecollectionofallsubsetsofωωwhicharenotdominating. 152S.SHELAHandB.TSABAN ThusB⊆X⊆Dfin⊆D.TheclassesB,X,Dfin,andDareusedtocharacterizecertaintopologicaldiagonalizationproperties[13,16,17]. Following[1],wedefinetheadditivitynumberforclassesI⊆J⊆P(ωω)with∪I∈Jby add(I,J)=min{|F|:F⊆Iand∪F∈J}, andwriteadd(J)=add(J,J).IfIcontainsallsingletons,thenadd(I,J)≤non(J),wherenon(J)=min{|J|:J⊆ωωandJ∈J}(thusnon(B)=b,non(D)=non(Dfin)=d,andnon(X)=x.) ForI,J∈{B,X,Dfin,D},thecardinalsadd(I,J)boundfrombelowtheadditivitynumbersofthecorrespondingtopologicaldiagonalizations.InSection4weexpressadd(I,J)foralmostallI,J∈{B,X,Dfin,D}intermsofwellknowncardinalcharacteristicsofthecontinuum.Intwocasesforwhichthisisnotdone,wegiveconsistencyresults. 2.Thecardinalκωτ Forourpurposes,afilteronabooleansubalgebraBofP(ω)isafamilyU⊆BwhichisclosedundertakingsupersetsinBandfiniteintersections,anddoesnotcontainfinitesetsaselements.Theorem3.p=κωτ. Proof.LetF⊆[ω]ωbeacenteredfamilyofsizepwhichhasnopseudo-intersection.LetBbethebooleansubalgebraofP(ω)generatedbyF.Then|B|=p.LetU⊆BbeafilterofBcontainingF.AsUdoesnotcontainfinitesetsaselements,Uiscentered.Moreover,|U|=p,andithasnopseudo-intersection. Towardsacontradiction,assumethatp<κωτ.ThenthereexistsaninfiniteA⊆ωsuchthattherestrictionUAislarge,andislinearlyquasiorderedby⊆∗.FixanyelementD0∩A∈UA.AsUAdoesnothaveapseudo-intersection,thereexist: 1.AnelementD1∩A∈UAsuchthatD1∩A⊂∗D0∩A;and2.AnelementD2∩A∈UAsuchthatD2∩A⊂∗D1∩A. Thenthesets(D2∪(D0\\D1))∩AandD1∩A(whichareelementsofUA)containtheinfinitesets(D0∩A)\\(D1∩A)and(D1∩A)\\(D2∩A),respectively,andthusarenot⊆∗-comparable,acontradiction.Acloselyrelatedproblemfrom[17]remainsopen. COMBINATORIALNOTIONSOFSMALLNESSANDADDITIVITY153 Definition4.AfamilyY⊆[ω]ωislinearlyrefinableifforeachy∈Y ˆ={ythereexistsaninfinitesubsetyˆ⊆ysuchthatthefamilyYˆ:y∈Y} ∗∗islinearly⊆-quasiordered.pistheminimalsizeofacenteredfamilyin [ω]ωwhichisnotlinearlyrefineable. Againitiseasytoseethatp=min{p∗,t}.Thus,asolutionofthefollowingproblemmayshedmorelightontheMinimalTowerproblem.Problem5.Doesp=p∗? 3.Theexcludedmiddleproperty Lemma6.b≤x≤,≤≤x≤,<≤x<,≤≤x<,<≤d. Proof.Theinequalitiesx≤,≤≤x≤, Next,considerasubsetYofωωwhichsatisfiestheexcludedmiddleprop-ertywithrespectto<,<,andletgwitnessthat.ThengwitnessesthatYisnotdominating.Thusx<,<≤d. Itremainstoshowthatx≤,<≤x<,≤.AssumethatY⊆ωωsatisfiestheexcludedmiddlepropertywithrespectto≤,<,andletg∈ωωavoidmiddlesinYwithrespectto≤,<.Defineg˜∈ωωsuchthatg˜(n)=g(n)+1foreachn.Foreachf,h∈Ywehavethat[f≤g]=[f Proof.ByLemma6,itisenoughtoshowthatx≤,<≤b.Letbα:α1ωbeanunboundedsubsetofωω.Foreachα 1foreachn∈ω,andsetY={b0α,bα:αthatYdoesnotsatisfytheexcludedmiddlepropertywithrespectto≤,<.Foreachg∈ωω,letα [b0α≤g⊇{2n+1:0≤g(2n+1)154S.SHELAHandB.TSABAN 0isaninfiniteset.Similarly,[b1α≤ginfinite.Thatis,gdoesnotavoidmiddlesinYwithrespectto≤,<. Lemma8.s≤x<,≤. Proof.AssumethatY⊆ωωissuchthat|Y| Theorem9.x<,≤=x<,<=max{s,b}. Proof.ByLemmas6and8,wehavethatmax{s,b}≤x<,≤≤x<,<.Wewillprovethatx<,<≤max{s,b}.TheargumentisanextensionoftheproofofTheorem7. Letb∗betheminimalsizeofasubsetBofωωsuchthatBisunboundedoneachinfinitesubsetofω.Accordingto[3],b=b∗.ThusthereexistsasubsetB=bα:α1ωbeasplittingfamily.Foreachα b0(n)=;b(n)=α,βα,β 0n∈Sαbβ(n)n∈SαandsetY={biα,β:i<2,α bγA∩Sα≤∗gA∩Sα,andβ>γsuchthatbβA\\Sα≤∗gA\\Sα.Then 101 [b0α,β 010 [b1α,β Remark10.Thecardinalmax{s,b}isalsoequaltothefinitelysplittingnumberfsstudiedin[8]. Severalvariationsoftheexcludedmiddlepropertyarestudiedintheappendixtotheonlineversionofthispaper[14]. 4.Additivityofcombinatorialproperties Theadditivitynumberadd(I,J)ismonotonedecreasinginthefirstcoor-dinateandincreasinginthesecond.Ourtaskinthissectionistodetermine,whenpossible,thecardinalsinthefollowingdiagramintermsoftheusualcardinalcharacteristicsb,d,etc.(Inthisdiagram,anarrowmeans≤.) add(D,D)→ add(Dfin,D)→add(X,D)→add(B,D) ↑↑↑ add(Dfin,Dfin)→add(X,Dfin)→add(B,Dfin) ↑↑add(X,X)→add(B,X) ↑ add(B,B) 4.1.ResultsinZFC. Theorem11.Thefollowingequalitieshold:1.add(B,Dfin)=add(B,D)=d; 2.add(Dfin,Dfin)=add(X,X)=add(X,Dfin)=2;and3.add(D,D)=add(B,B)=add(B,X)=b. 156S.SHELAHandB.TSABAN Proof.(1)Asnon(D)=d,itisenoughtoshowthatadd(B,Dfin)≥d. Assumethat|I| ∗afinitesubsetofIsuchthatF⊆i∈I˜Yi.Thenmax(F)≤max({gi:i∈ ˜})≥∗h.Thusmax(F)≥∗h,soY∈Dfin.I (2)Itisenoughtoshowthatadd(X,Dfin)=2.Thus,let Y0={f∈ωω:(∀n)f(2n)=0andf(2n+1)≥1}Y1={f∈ωω:(∀n)f(2n)≥1andf(2n+1)=0}. Thentheconstantfunctiong≡1witnessesthatY0,Y1∈X,butY0∪Y1is2-dominating,andinparticularfinitelydominating. (3)Itisfolklorethatadd(D,D)=add(B,B)=b–see,e.g.,[2,fullversion]foraproof.Itremainstoshowthatadd(B,X)≤b.LetBbeasubsetofωωwhichisunboundedoneachinfinitesubsetofω,andsuchthat|B|=b.Foreachf∈BletYf={g∈ωω:g≤∗f}.(ThuseachYfisbounded.)WeclaimthatY=f∈BYf∈X.Tothisend,consideranyfunctiong∈ωωwhichclaimstowitnessthatY∈X.Inparticular,[0 Theonlycaseswhichwehavenotsolvedyetareadd(Dfin,D)andadd(X,D).In[2,fullversion]itwasprovedthatb≤add(Dfin,D).InTheorem2.2of[10]itis(implicitly)provedthatg≤add(Dfin,D).Thus max{b,g}≤add(Dfin,D)≤add(X,D)≤d. Moreover,foranyI⊆J,cf(add(I,J))≥add(J),andtherefore cf(add(Dfin,D)),cf(add(X,D))≥add(D,D)=b. Thenotionofultrafilterwillbeusedtoobtainupperboundsonadd(Dfin,D)andadd(X,D).AfamilyU⊆[ω]ωisanonprincipalultrafilterifitisclosedundertakingsupersetsandfiniteintersections,andcannotbeextended,thatis,foreachinfiniteA⊆ω,eitherA∈Uorω\\A∈U.Consequently,alinearquasiorder≤Ucanbedefinedonωωby f≤Ug if [f≤g]∈U. COMBINATORIALNOTIONSOFSMALLNESSANDADDITIVITY157 Thecofinalityofthereducedproductωω/UistheminimalsizeofasubsetCofωωwhichiscofinalinωωwithrespectto≤U. Theorem12.Foreachcardinalnumberκ,thefollowingareequivalent:1.κ 2⇒1:AssumethatY=α<κYαwhereeachYα∈Dfin.Foreachα,letUαbeanultrafiltersuchthatYα/Uαisbounded,saybygα∈ωω[13].By(2)letg∈ωωbesuchthatforeachα<κ,[gα≤g]∈Uα.ThengwitnessesthatYisnotdominating:Foreachf∈Y,letαbesuchthatf∈Yα.Then[f≤gα]∈Uα,thus[f Proof.Assumethatκ Lemma15.g∈ωωavoidsmiddlesinYif,andonlyif,foreachf∈Y[f 2.foreachκ-sequence(gα,Fα):α<κ,suchthateachgα∈ωω,andforeachαtherestrictionFα[0 n∈A˜(n)=gα(n)−1h max{gα(n),h(n)}otherwise.˜ ˜∈YαbethefunctiondefinedinForeachα<κandA∈Fα,leth ˜∈Y,therefore[h˜ COMBINATORIALNOTIONSOFSMALLNESSANDADDITIVITY159 Wemayassumethatforeachα<λ,[0 Theorem18.Itisconsistent(relativetoZFC)thatthefollowingholds: u=add(Dfin,D)=add(X,D)=ℵ1<ℵ2=s=c. Thus,itisnotprovablethats≤add(X,D). Proof.In[5]amodelofsettheoryisconstructedwherec=ℵ2andthereexistasimplePℵ1pointandasimplePℵ2point.ThesimplePℵ1pointisgeneratedbyℵ1manysets,thusu=ℵ1.Asb≤u,b=ℵ1aswell. NyikosprovedthatifthereexistsapseudoPκpointUandκ>b,thencof(ωω/U)=b(see[4]).ThusbyCorollary17,add(X,D)≤b=ℵ1inthismodel.In[4]itisprovedthatifthereexistsapseudoPκpointU,thens≥κ.Therefores≥ℵ2inthismodel. Depth+([ω]ω)isdefinedastheminimalcardinalκsuchthatthereexistsno⊂∗-decreasingκ-sequencein[ω]ω.(Thus,e.g.,t UsethefactthatDepth+([ω]ω)≤κ(respectively,Depth+([ω]ω)=d)to ˜αofFαsuchthat|F˜α|<κchooseforeachα<κacofinalsubfamilyF ˜α| α<κ,A∈Fα}haslessthandmanyelementsandthereforecannotbedominating.Leth∈ωωbeawitnessforthat.Fixα<κ.ForallA∈Fα,thereexistinfinitelymanynsuchthat (n))=gα◦A(n) CκbetheforcingnotionwhichadjoinsκmanyCohenrealstoV.ThenintheCohenmodelVCκ,thefollowingholds: add(Dfin,D)=s=a=non(M)=ℵ1 Inparticular,thecardinalsadd(Dfin,D)andadd(X,D)arenotprovablyequal. Corollary21.Itisnotprovablethatadd(X,D)≤cf(d). Proof.UseTheorem20withκ=ℵℵ1.InVCκ,d=c=ℵℵ1,thereforecf(d)=ℵ1 COMBINATORIALNOTIONSOFSMALLNESSANDADDITIVITY161 dtoo.Thesemodelsshowthatnoneofthefollowingisprovable: min{cov(N),r}≤add(X,D)(Randomrealsmodel),add(Dfin,D)≤max{cov(N),s}(Hechlerrealsmodel),add(Dfin,D)≤max{non(N),cov(N)}(Laverrealsmodel),andadd(Dfin,D)≤max{u,a,non(N),non(M)}(Millerrealsmodel).Collectingalloftheconsistencyresults,wegetthattheonlypossibleadditionallowerboundsonadd(X,D)arecov(M)ande(observethate≤cov(M)[3].) Problem23.Iscov(M)≤add(X,D)?Andifnot,ise≤add(X,D)?Noadditionalcardinalcharacteristiccanserveasanupperboundonadd(Dfin,D). Anotherquestionofinterestiswhetheradd(Dfin,D)oradd(X,D)appearinthelatticegeneratedbythecardinalcharacteristicswiththeoperationsofmaximumandminimum.Inparticular,wehavethefollowing.Problem24.Isitprovablethatadd(Dfin,D)=max{b,g}? WehaveanindicationthattheanswertoProblem24isnegative,butthisisadelicatematterwhichwillbetreatedinafuturework. References [1]Bartoszy´nski,T.,Judah,H.,SetTheory.OntheStructureoftheRealLine,AK Peters,Wellesley,MA,1995. [2]Bartoszynski,T.,Shelah,S.,Tsaban,B.,Additivitypropertiesoftopo-logicaldiagonalizations,J.SymbolicLogic,(toappear).(Fullversion:http://arxiv.org/abs/math.LO/0112262) [3]Blass,A.R.,Combinatorialcardinalcharacteristicsofthecontinuum,toappearin “HandbookofSetTheory”,(eds.M.Foreman,et.al.). [4]Blass,A.R.,Mildenberger,H.,Onthecofinalityofultrapowers,J.SymbolicLogic 64(1999),727–736. [5]Blass,A.R.,Shelah,S.,TheremaybesimplePℵ1-andPℵ2-points,andtheRudin-Keislerorderingmaybedownwarddirected,Ann.PureAppl.Logic33(1987),213–243. [6]Canjar,R.M.,CountableultraproductswithoutCH,Ann.PureAppl.Logic37(1988), 1–79. [7]Canjar,R.M.,Cofinalitiesofcountableultraproducts:theexistencetheorem,Notre DameJ.FormalLogic30(1989),539–542.[8]Kamburelis,A.,W¸eglorz,B.,Splittings,Arch.Math.Logic35(1996),263–277. [9]Kunen,K.,InaccessibilityPropertiesofCardinals,DoctoralDissertation,Stanford, 1968. 162S.SHELAHandB.TSABAN [10]Mildenberger,H.,Groupwisedensefamilies,Arch.Math.Logic40(2001),93–112.[11]Roitman,J.,Non-isomorphicH-fieldsfromnon-isomorphicultrapowers,Math.Z. 181(1982),93–96. [12]Rothberger,F.,OnsomeproblemsofHausdorffandofSierpi´nski,Fund.Math.35 (1948),29–46. [13]Scheepers,M.,Tsaban,B.,ThecombinatoricsofBorelcovers,TopologyAppl.121 (2002),357–382. [14]Shelah,S.,Tsaban,B.,Criticalcardinalitiesandadditivitypropertiesofcombinatorial notionsofsmallness(onlineversion),http://arxiv.org/abs/math.LO/0304019.[15]Tsaban,B.,Atopologicalinterpretationoft,RealAnal.Exchange25(1999/2000), 391–404. [16]Tsaban,B.,AdiagonalizationpropertybetweenHurewiczandMenger,RealAnal. Exchange27(2001/2002),1–7. [17]Tsaban,B.,Selectionprinciplesandtheminimaltowerproblem,NotediMat.,(to appear). SaharonShelah InstituteofMathematics HebrewUniversityofJerusalemGivatRam,91904JerusalemIsrael andMathematicsDepartmentRutgersUniversity NewBrunswick,NJ08903USA shelah@math.huji.ac.il BoazTsaban DepartmentofMathematics andComputerScienceBar-IlanUniversityRamat-Gan52900,Israel tsaban@macs.biu.ac.il 因篇幅问题不能全部显示,请点此查看更多更全内容WewillshowthatYdoesnotsatisfytheexcludedmiddlepropertywithrespectto<,<.Assumethatg∈ωωavoidsmiddlesinYwithrespectto<,<.ThenthesetA=[0