极限点型 Sturm-Liouville 算子乘积的自伴性
Sturm-Liouville
(
210094)
l(y)=−(py)+qy,t∈[a,∞),lk(y)(k=1,2,3)
l(y)Li(i=1,2)L2L1
l(y)=−y
+qy,t∈[a,∞),
Li(i=1,2,3)L3L2L1
MR(2000)
34B20,47E05
1
Sturm-Liouville
=−¯2l(ψ)h
d2ψdx
+x22m2ψψ–m–
h¯
–L2[0,∞)
Sturm-Liouville
[1,2,3,4]
Sturm-Liouville
P=
NakDk
,
Dk
=dk
k=0
dt
k,
t∈I=[a,∞),ak
[a,∞)
P
+
=
N(−1)kDkak.
k=0
a
a
0,02
2×2
(aij)1≤i,j≤n,AT,A∗
A
rankA
[·,·]N(t)
(1.1)
Lagrange
∞
∞
P(y)zdt−
yP+(z)dt=[y,z]a
a
N(∞)−[y,z]N(a).
2003-03-20,2005-06-28.
Hamilton
(1.1)
n
A
A
3
Sturm-Liouville
[5,6]
369
QN(t)
[y,z]N(t)=(σz(t))TNQN(t)(σy(t))N,
(σz(t))TN
=z(t),z
(1)
(t),···,z
(N−1)
T
1(N−1)
(t),(σy(t))N=y(t),y(t),···,y(t),
(1.2)(1.3)
QN(t)=(fjk(t))0≤j,k≤N−1,
⎧N−k−1⎪⎨(−1)hhDh−ja
k+h+1(t),(0≤k+j≤N−1),
fjk(t)=j
⎪⎩h=j
0,(N−1 [5,6] ∀y,z∈D(T1(P)),[y,z]N(∞)=lim[y,z]N(t) t→∞ 1−1∗ (Q−N(t))=−QN(t). ; Q∗N(t)=−QN(t), 1 P [a,∞) P ( T1(P)) D(T1(P)) ={g|g∈L2[a,∞),g(N−1) [a,∞) Pg∈L2[a,∞)}, T1(P)g=Pg, g∈D(T1(P)). 2 P 3 P D(T0(P))P[a,∞) T1(P) ∞ C0(a,∞) T0(P) P ( d(P)) d(P)= 4 P [a,∞)P D(T1(P))1dim.2D(T0(P)) N d(P)=N, 1[5,6]P d(P)=12N, P ∀f∈D(T1(P)) g∈D(T1(P+)):lim[f,g]N(t)=0. t→∞ 2[5]y∈D(T0(P)) (1)y(a)=y(1)(a)=···=y(N−1)(a)=0;(2)∀z∈D(T1(P)),[y,z]N(∞)=0. +1 3[7](Calkin)P(m,m)([N2]≤m≤N,m∈Z+),{vj(t)}(j= D(T1(P))1,2,···,m) m (1)cjvj∈/D(T0(P)); (2)[vi,vj]N(∞)−[vi,vj]N(a)=0(i=1,2,···,m),D(T1(P)) j=1 [y,vj]N(∞)−[y,vj]N(a)=0(j=1,2,···,m) (1.4) 370 P(y)P(y) 26 D (1),(2), D(T1(P)) {vj(t)}(j=1,2,···,m) (1.5) D={y∈D(T1(P))|[y,vj]N(∞)−[y,vj]N(a)=0,j=1,2,···,m}. l= nk=0 (−1)kDkakDk, t∈I=[a,∞), [a,∞) (1.6) (1.6) M ak∈Ck[a,∞). d(l)n≤d(l)≤2n(3[8]4(1.6)l lT(l)T(l) [6]). I 2n ( d(P)=n) n×2n D={y∈D(T1(l))|M(σy(a))2n=0}, (1)rankM=n, 1∗ (2)MQ−2n(a)M=0, 1 Q−2n(a) (1.2) (1.3) 2 Sturm-Liouville Sturm-Liouville l(y)=−(py(1))(1)+qy,t∈I=[a,∞), (2.1) p,q∈C3(I) p>0, l2(y)=l(l(y))=p2y(4)+4pp(1)y(3)+(3pp(2)+2(p(1))2−2pq)y(2) +(pp(3)+p(1)p(2)−2p(1)q−2pq(1))y(1)+(q2−pq(2)−p(1)q(1))y. d(l)l (d(l)=2)A.lk(k=1,2,···) (2.2) 1977KauffmanR.M.l [3] F,F(l).EvansW.D. [2].lk(k=1,2) Zettl Li(i=1,2)(2.1) L=L2L1 l(y) Q2(t),Q4(t) D(Li) l(y),l2(y) Lagrange Q= 0−11 0 , Q−1= 01 . (2.3) −10 3 Sturm-Liouville (1.2) (1.3) Q−21(t)= 1−Q−02 H0(t) 41p(t) Q1 ,(t)= 1 p4 (t) −H0∗(t) (p(t)p (2) (t)−2p(t)q(t))Q−1 , H0 −p2(t) 0(t)= p2(t)−2p(t)p(1)(t) . Li(i=1,2): Li(y)=l(y), y∈D(Li), D(Li)={y∈D(T1(l))|Ai(σy(a))2=0}, Ai 2×2 rankAi=1. (σl(y)(a))=l(y)(a)l(y)(a)T2(1) =(H1H2)(σy(a))4, q(a) −p(1)(a) 0 H1= q (1) (a)q(a)−p (2) (a) ,H2=−p(a)−2p (1) (a)−p(a) . L=L2L1,D(L) L L L(y)=l2(y), y∈D(L), D(L)={y∈D(T1(l2))|M(σy(a))4=0}, M= A102 A. 2H1 A2H2 p=0 rankH2=2,(2.7) rankM=2. 1L=L2L1 A1Q−1A∗2=0, A1,A2,Q−1 (2.6) (2.7)(2.3)L=L2L1 (2.10),(2.11) l2(y) 4 L MQ−41(a)M∗ =0, 371 (2.4) (2.5) (2.6) (2.7) (2.8) (2.9) (2.10) (2.11) 4 372 26 M,Q−41 (a) (2.11) (2.4) MQ−1∗ 1 02 4(a)M= AAQ−A∗1H1∗A∗ 2 2H41(a) 1A2H202H2∗A∗ =02A1Q−1A∗ 2 2p(1a)A−1A∗. 2Q1 02−MQ41(a)M∗ =0 −1A1QA∗2=0, 3 Sturm-Liouville l(y)=−y+qy,t∈I=[a,∞), q∈C4(I), lk(k=1,2,3) l3(y)=l2(l(y))=−y(6)+3qy(4)+6q(1)y(3)+(7q(2)−3q2)y(2) +(4q(3)−6qq(1))y(1)+(q3−3qq(2)−2(q(1))2+q(4))y, Lagrange Q6(t),⎛ 02 02 Q−1 ⎞ Q−61(t)=⎜⎜⎝ 02Q−1 H)⎟ 3(t⎟⎠,Q−1 −H3∗(t) H4(t) Q−1 (2.3) H3(t)= 03q(t) (2)−3q(t)−3q (1) (t) , H4(t)=(4q(t)+6q2(t))Q−1. Li(i=1,2,3): Li(y)=−y+q(t)y, y∈D(Li), D(Li)={y∈D(T1(l))|Ai(σy(a))2=0}, Ai 2×2 rankAi=1. L=L3L2L1,D(L) L L L(y)=l3(y), y∈D(L), D(L)={y∈D(T1(l3))|M(σy(a))6=0}, ⎛ A1 02 02⎞ M=⎜⎜⎝A2K1 −A020q(a2⎟ ⎟)⎠,K1=A3K2 Aq (1) 3K3 A(a) q(a) , 3 .2) .3) .4) .5) .6) .7) (3.1) (3(3(3(3(3(33 Sturm-Liouville , 373 0 . (3.8) K2= q2(a)−q(2)(a)−2q(1)(a) K3= −2q(a) 2q(a)q(1)(a)−q(3)(a)q2(a)−3q(2)(a) −4q(1)(a)−2q(a) ⎛A1 0202⎞⎛ ⎞ M=⎜⎜⎝ 02 A2⎟E1 0202⎟⎜20⎜K⎟1−E202⎟02 0⎠⎝⎠ 2A3K2K3E3 (3.5) rankM=3. ⎛ 02 02 A1Q −1 A∗⎞3 MQ−61(a)M∗=⎜⎜⎝ 02 A2Q−1A∗2 02⎟ ⎟.A3Q−1A∗1 00⎠ 2 2 2 L3L2L1 A1Q−1A∗3=A2Q −1A∗ 2=0,A1,A2,A3,Q−1(3.4)(3.5)(2.3) 1L1,L2,L3(3.4)(3.5)L(3.6) L=L3L2L1L2L,L1,L3 Hamilton l(y):=−¯h 2d2ymdx +x222y,0≤x<∞, y– Li(i=1,2,3) L1y=l(y),x∈[0,∞),y(0)=y(0); L2y=l(y),x∈[0,∞),y(0)=−y(0); L3y=l(y),x∈[0,∞),y(0)=0. [2] Levinson-Evans-Zettl Li(i=1,2,3)L1,L2,L3 L3L2L1 (3.7)L1=L3. (3.8) 374 26 [1]CaoZJ,SunJandEdmundsDE.Onself-adjointnessoftheproductoftwosecond-orderdifferential operators.ActaMath.Sinica(EnglishSeries),1999,15(3):375–386. [2]EvansWDandZettlA.Levinson’slimit-pointcriterionandpowers.J.Math.Anal.andAppl., 1978,62:629–639. [3]KauffmanRM,ReadTandZettlA.TheDeficiencyIndexProblemofPowersofOrdinaryDiffer-entialExpressions.LectureNotesinMath.621,Berlin/NewYork:Springer-Verlag,1977. [4]RaceDandZettlA.Onthecommutativityofcertainquasi-differentialexpression,I.J.London Math.Soc.,1990,42(2):489–504. 1987.[5] [6]NaimarkMA.LinearDifferentialOperators,II.NewYork:Ungar,1968. Calkin(),1988,19(4):573–587.[7] [8]SunJ.Ontheself-adjointextensionsofsymmetricdifferentialoperatorswithmiddledeficiency indices.ActaMath.Sinica(EnglishSeries),1986,2(2):152–167. 1983,12(3):161–178.[9] [10]CoddingtonEA.Thespectralrepresentationofordinaryself-adjointdifferentialoperators.Ann. Math.,1954,60(1):192–211. [11]EdmundsDEandEvansWD.SpectralTheoryandDifferentialOperators.Oxford:Oxford UniversityPress,1987. SELF-ADJOINTNESSOFPRODUCTSOFTHELIMIT-POINT STURM-LIOUVILLEOPERATORS YangChuanfu (DepartmentofAppliedMathematics,NanjingUniversityofScienceandTechnology,Nanjing210094) AbstractForthedifferentialexpressionl(y)=−(py)+qy,t∈[a,∞),undertheassumptionthatlk(k=1,2,3)arelimit-pointed,theauthorstudiestheself-adjointnessoftheproductoperatorL2L1,whichLi(i=1,2)aregeneratedbyl(y),andobtainsanecessaryandsufficientconditionforself-adjointnessofL2L1.Also,anecessaryandsufficientconditionfortheself-adjointnessofL3L2L1,whichLi(i=1,2,3)areassociatedwithl(y)=−y+qy,t∈[a,∞),isobtained. KeywordsProductsofdifferentialoperators,limit-pointeddifferentialexpression,self-adjointboundaryconditions. 因篇幅问题不能全部显示,请点此查看更多更全内容