三角形难题(含答案)
已知,如图,三角形ABC是等腰直角三角形,∠ACB=90°,F是AB的中点,直线l经过点C,分别过点A、B作l的垂线,即AD⊥CE,BE⊥CE,
(1)如图1,当CE位于点F的右侧时,求证:△ADC≌△CEB; (2)如图2,当CE位于点F的左侧时,求证:ED=BE-AD;
(3)如图3,当CE在△ABC的外部时,试猜想ED、AD、BE之间的数量关系,并证明你的猜想.
页脚.
3.(1)如图,在△ABC和△ADE中,AB=AC,AD=AE,∠BAC=∠DAE=90°.
①当点D在AC上时,如图1,线段BD、CE有怎样的数量关系和位置关系?直接写出你猜想的结论;
②将图1中的△ADE绕点A顺时针旋转α角(0°<α<90°),如图2,线段BD、CE有怎样的数量关系和位置关系?请说明理由.
(2)当△ABC和△ADE满足下面甲、乙、丙中的哪个条件时,使线段BD、CE在(1)中的位置关系仍然成立?不必说明理由.
甲:AB:AC=AD:AE=1,∠BAC=∠DAE≠90°; 乙:AB:AC=AD:AE≠1,∠BAC=∠DAE=90°; 丙:AB:AC=AD:AE≠1,∠BAC=∠DAE≠90°.
页脚.
解解:(1)①结论:BD=CE,BD⊥CE; 答: ②结论:BD=CE,BD⊥CE…1分
理由如下:∵∠BAC=∠DAE=90°
∴∠BAC﹣∠DAC=∠DAE﹣∠DAC,即∠BAD=∠CAE…1分 在△ABD与△ACE中,
∵
∴△ABD≌△ACE(SAS) ∴BD=CE…1分
延长BD交AC于F,交CE于H. 在△ABF与△HCF中,
∵∠ABF=∠HCF,∠AFB=∠HFC ∴∠CHF=∠BAF=90° ∴BD⊥CE…3分
(2)结论:乙.AB:AC=AD:AE,∠BAC=∠DAE=90°…2分
解答:(1)证明:∵AD⊥CE,BE⊥CE, ∴∠ADC=∠CEB=90°. ∵∠ACD+∠ECB=90°,∠CAD+∠ACD=90°, ∴∠CAD=∠BCE(同角的余角相等). 在△ADC与△CEB中
∠ADC=∠CEB ∠CAD=∠BCE AC=BC , ∴△ADC≌△CEB(AAS).
(2)证明:∵AD⊥CE,BE⊥CE, ∴∠ADC=∠CEB=90°. ∵∠ACD+∠ECB=90°,∠CAD+∠ACD=90°, ∴∠CAD=∠BCE(同角的余角相等). 在△ADC与△CEB中
∠ADC=∠CEB ∠CAD=∠BCE AC=BC , ∴△ADC≌△CEB(AAS). ∴DC=BE,AD=CE. 又∵ED=CD-CE, ∴ED=BE-AD.
页脚.
(3)ED=AD+BE.
证明:∵AD⊥CE,BE⊥CE, ∴∠ADC=∠CEB=90°. ∵∠ACD+∠ECB=90°,∠CAD+∠ACD=90°, ∴∠CAD=∠BCE(同角的余角相等). 在△ADC与△CEB中
∠ADC=∠CEB ∠CAD=∠BCE AC=BC , ∴△ADC≌△CEB(AAS). ∴DC=BE,AD=CE. 又∵ED=CE+DC, ∴ED=AD+BE.
页脚.
页脚.
因篇幅问题不能全部显示,请点此查看更多更全内容